Sheaf theoretic characterization of topological etale groupoids

Koji Yamazaki

Tokyo Institute of Technology

February 10th, 2020

§0 Introduction

Motivation

	as étale space	as functor
Sheaves (on X)	$E \rightarrow X$	$X^{op}_{top} o \mathbf{Set}$
Étale groupoids (on \mathcal{G}_0)	$\mathcal{G}_1 \stackrel{s}{\underset{t}{ ightharpoons}} \mathcal{G}_0$?

}

we obtain some (trivial) ideas:

- "sheafifications of pre-groupoids"
- "enriched étale groupoids"

§0 Introduction

Motivation

	as étale space	as functor
Sheaves (on X)	$E \rightarrow X$	$X_{top}^{op} o \mathbf{Set}$
Étale groupoids (on \mathcal{G}_0)	$\mathcal{G}_1 \stackrel{s}{\underset{t}{ ightharpoons}} \mathcal{G}_0$	pseudogroup sheaves

,

we obtain some (trivial) ideas:

- "sheafifications of pre-groupoids"
- "enriched étale groupoids"

Previous work

```
1904(Cartan) a pseudogroup is defined 1932(Whitehead) the term "pseudogroup" appears
```

Definition 0.1

A *pseuedogroup* on a topological space X is a subgroupoid of the set of homeo. between open sets of X, satisfying the sheaf property.

Previous work

```
1958(Haeflier) from pseudogroups via étale groupoids
1998(Lawson) abstract pseuedogroups are equivalent to étale groupoids
```

2007(Resende) étale groupoids are equivalent to quantales

Definition 0.2

An *abstract pseuedogroup* is a complete and infinitely distributive inverse semigroup.

This is not sheaf theoretical!

$|\S 1|$ topological étale groupoids

Recall, a *groupoid* is a category such that any morphism is an isomorphism. A *topological groupoid* is a groupoid $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1, s, t, i, inv, comp)$ such that the set of objects \mathcal{G}_0 and the set of morphisms \mathcal{G}_1 are topological spaces, and that the structure maps (i.e. source map s, target map t, identities map i, inversion map inv and composition map comp) are continuous.

A topological groupoid is *étale* if the source map and the target map are local homeomorphisms.

Let X be a topological space. A topological groupoid on X is a topological groupoid $\mathcal{G}_1 \rightrightarrows \mathcal{G}_0$ such that $\mathcal{G}_0 = X$.

sheaves associated with topological étale groupoids

Let
$$X$$
 be a topological space. $X_{top} \stackrel{\text{def}}{=} \{U \subset X : open\}.$
 $x \to y \stackrel{\text{def}}{\Leftrightarrow} \mathcal{N}(y) \subset \mathcal{N}(x) \text{ where } \mathcal{N}(x) \stackrel{\text{def}}{=} \{U \in X_{top} | x \in U\}.$

Let \mathcal{G} be a topological étale groupoid on X.

$$\hat{\mathcal{G}}(U,V) \stackrel{\mathrm{def}}{=} \{f: U \to t^{-1}(V) | s \circ f = id \} \text{ for } U,V \in X_{top}.$$

 $\hat{\mathcal{G}}$ is a small category with including X_{top} (i.e. $X_{top} \subset \hat{\mathcal{G}}$) as a subcategory.

$$\hat{\mathcal{G}}_{x}(V) \stackrel{\text{def}}{=} \underset{U \ni x}{\lim} \hat{\mathcal{G}}(-, V) \text{ for } V \in X_{top} \ x \in X.$$

$$\hat{\mathcal{G}}_{x}^{y} \stackrel{\mathrm{def}}{=} \underset{\stackrel{\longleftarrow}{\underset{V \ni y}{\longrightarrow}}}{\lim} \hat{\mathcal{G}}_{x}(V) \text{ for } x, y \in X.$$

Propositoin 1.1

The above $\hat{\mathcal{G}}$ satisfies the following:

- (1) $Ob(X_{top}) = Ob(\hat{\mathcal{G}}).$
- (2.1) the natural projections $\hat{\mathcal{G}}_{x}^{y} \to \hat{\mathcal{G}}_{x}(V)$ are injections.
- (2.2) $\coprod_{y \in V} \hat{\mathcal{G}}_{x}^{y} \to \hat{\mathcal{G}}_{x}(V)$ is surjection.
- $(2.3) \ y \to z \Rightarrow \hat{\mathcal{G}}_{x}^{y} \subset \hat{\mathcal{G}}_{x}^{z}.$ $f_{x} \in \hat{\mathcal{G}}_{x}^{y} \Leftrightarrow f(x) \to y \text{ for any } f_{x} \in \hat{\mathcal{G}}_{x}(V).$
 - (3) the presheaf $\hat{\mathcal{G}}(-,V)$ is a sheaf for each $V\in X_{top}$.

Remark 1.2

If X is a T_1 space (i.e. $x \to y \Rightarrow x = y$), all together the above conditions (2.1), (2.2) and (2.3) equivalents the following:

(2)
$$\hat{\mathcal{G}}_x(V) \cong \coprod_{y \in V} \hat{\mathcal{G}}_x^y$$
 for $V \in X_{top}$ and $x \in X$, where the canonical projections $\hat{\mathcal{G}}_x^y \to \hat{\mathcal{G}}_x(V)$ are identified with the canonical injections $\hat{\mathcal{G}}_x^y \to \coprod_{v \in V} \hat{\mathcal{G}}_x^y$.

§2 pseudogroup sheaves

Suppose that \mathcal{C} is a small category such that $X_{top} \subset \mathcal{C}, Ob(X_{top}) = Ob(\mathcal{C})$. Then $\mathcal{C}(-,V): X_{top}^{op} \subset \mathcal{C}^{op} \to \mathbf{Set}$ is a presheaf on X for $V \in X_{top}$.

$$C_x(V) \stackrel{\text{def}}{=} \underset{U \ni x}{\lim} C(-, V) \text{ for } V \in X_{top} \ x \in X.$$

$$C_x^y \stackrel{\text{def}}{=} \underset{V \ni y}{\lim} C_x(V) \text{ for } x, y \in X.$$

The composition map of the category $\mathcal C$ induce $\mathcal C_y^z \times \mathcal C_x^y \to \mathcal C_x^z$.

Then, we can define the category \mathcal{C}^{\star} by $Ob(\mathcal{C}^{\star}) \stackrel{\text{def}}{=} X$ and $\mathcal{C}^{\star}(x,y) \stackrel{\text{def}}{=} \mathcal{C}_{x}^{y}$.

Definition 2.1 (Y.)

Let X be a T_1 space. A *pre-pseudogroup* on X is a small category $\mathcal C$ with an embedding functor $X_{top} \subset \mathcal C$ satisfying the following:

- (1) $Ob(X_{top}) = Ob(C)$.
- (2) $C_x(V) \cong \coprod_{y \in V} C_x^y$ for $V \in X_{top}$ and $x \in X$, where the canonical projections $C_x^y \to C_x(V)$ are identified with the canonical injections $C_x^y \to \coprod_{y \in V} C_x^y$.
- (4) the category C^* is a groupoid.

A *pseudogroup sheaf* on X is a pre-pseudogroup on X satisfying the following:

(3) the presheaf C(-, V) is a sheaf for each $V \in X_{top}$.

Examples

Example 2.2

Let $Homeo_X^I(U,V) \stackrel{\text{def}}{=} \{f: U \to V : local \ homeo.\}$ for $U,V \in X_{top}$. $Homeo_X^I$ satisfies the above conditions (1), (3) and (4). If X is T_1 , then $Homeo_X^I$ is a pseudogroup sheaf on X.

Example 2.3

Let $\mathcal F$ be a sheaf of group on X. We define $\mathcal C$ as

$$\mathcal{C}(U,V) \stackrel{\mathrm{def}}{=} \begin{cases} \mathcal{F}(U) & (U \subset V) \\ \emptyset & (U \not\subset V). \end{cases}$$

Then C is a pseudogroup sheaf on X.

underlying maps

Let X be a T_1 space, and let $\mathcal C$ be a pre-pseudogroup on X. For $f\in \mathcal C(U,V)$, define $\bar f:U\to V$ in the following:

Take any point $x \in U$.

Then the germ f_x of f at x belong to $\mathcal{C}_x(V) \cong \coprod_{y \in V} \mathcal{C}_x^y$.

So there exists exactly one point $y \in V$ such that $f_x \in \mathcal{C}_x^y$.

Define $\bar{f}(x) \stackrel{\text{def}}{=} y$.

Remark 2.4

 $\overline{g \circ f} = \overline{g} \circ \overline{f}$ and $\overline{id} = id$.

Call \bar{f} the underlying map of f.

Propositoin 2.5

The underlying map $\bar{f}: U \to V$ is continuous.

Proof.

Take any open set $V' \subset V$ and any point $x \in \bar{f}^{-1}(V')$. Then $f_x \in \mathcal{C}_x(V')$. So there exists an open neighborhood $U' \subset U$ of x such that $f|_{U'} \in \mathcal{C}(U', V')$. Namely, $x \in U' \subset \bar{f}^{-1}(V')$.

Remark 2.6

Moreover, \bar{f} is local homeomorphism because C^* is a groupoid.

classical pseudogroups

Definition 2.7

A pseudogroup sheaf \mathcal{C} on X is *concrete* if the functor $\mathcal{C} \to Homeo_X^l$; $f \mapsto \overline{f}$ is faithful.

Let $\mathcal C$ be a concrete pseudogroup on X. Then the subcategory of invertible morphisms of $\mathcal C$ is a *pseudogroup* in a classical sence.

Conversely, we can obtain a concrete pseudogroup in the new sence from any pseudogroup in the classical sence, by "sheafification".

from pseudogroup sheaves via étale groupoids

Let $s: E_{\mathcal{C}} \to X$ be an étale space associated with the pre-sheaf $\mathcal{C}(-,X)$.

Namely,
$$E_{\mathcal{C}} = \coprod_{x \in X} \mathcal{C}_x(X) \cong \coprod_{x,y \in X} \mathcal{C}_x^y$$
 and $s(f_x) = x$ for $f_x \in \mathcal{C}_x^y$.

In other words, $E_{\mathcal{C}} = Mor(\mathcal{C}^*)$ is a set of morphisms of \mathcal{C}^* , and s is a source map of \mathcal{C}^* .

Propositoin 2.8

 \mathcal{C}^{\star} is a topological étale groupoid.

Proof.

We have to show that

• the target map $t: E_{\mathcal{C}} \to X$

is a local homeomorphism, and that

- the identities map $i: X \to E_{\mathcal{C}}$,
- the inversion map inv : $E_C \rightarrow E_C$, and
- the composition map $comp : E_{\mathcal{C}} \times_X E_{\mathcal{C}} \to E_{\mathcal{C}}$

are continuous.

 $t = s \circ inv$ and $inv \circ inv = id$, so We have to proof that i, inv, and comp are continuous.

 $i(x) = (id_X)_x$, so i is continuous.

In the similar proof of the Prop 2.5, inv and comp are continuous.

Main Result

Theorem 2.9 (Y.)

Let X be a T_1 space. There exists one-to-one correspondence between topological étale groupoids over X and pseudogroup sheaves on X.

§3 sheafification

Recall the sheafification of a presheaf. Let \mathcal{F} be a presheaf, and let $S_x \mathcal{F}$ be the skyscraper sheaf supported at x with valued \mathcal{F}_x , where \mathcal{F}_x is the stalk of \mathcal{F} at x.

Let $\mathcal{F}^\# \stackrel{\mathrm{def}}{=} \prod_x S_x \mathcal{F}$. Now, we define $\hat{\mathcal{F}}$ as the minimum subsheaf of $\mathcal{F}^\#$

including $\mathit{Im}[\mathcal{F} \to \mathcal{F}^{\#}]$. $\mathcal{F} \to \hat{\mathcal{F}}$ is the sheafification.

Definition 3.1

Let C, D be pre-pseudogroups on X. A *morphism* $f: C \to D$ is a functor $f: C \to D$ preserving X_{top} . i.e. The following diagram is commutative:

Let \mathcal{C} be a pre-pseudogroup on X, and let $\mathcal{C}^{\#}(U,V) \stackrel{\text{def}}{=} \mathcal{C}(U,V)^{\#}$ for each open sets $U,V \in X_{top}$.

The composition map $C(V, W) \times C(U, V) \rightarrow C(U, W)$ induces $C^{\#}(V, W) \times C^{\#}(U, V) \rightarrow C^{\#}(U, W)$. $C^{\#}$ is a pseudogroup sheaf on X.

Theorem 3.2 (Y.)

Let X be a T_1 space, and let $\mathcal C$ be a pre-pseudogroup on X. There exists a pseudogroup sheaf $\hat{\mathcal C}$ on X and a morphism $\mathcal C \to \hat{\mathcal C}$ satisfying universality: For any pseudogroup sheaf $\mathcal D$ on X and a morphism $\mathcal C \to \mathcal D$, there exists an unique morphism $\hat{\mathcal C} \to \mathcal D$ such that the following diagram is commutative;

Proof.

Let $\hat{\mathcal{C}}$ be the minimum sub-pseudogroup sheaf of $\mathcal{C}^{\#}$ including $Im[\mathcal{C} \to \mathcal{C}^{\#}]$. $\mathcal{C} \to \hat{\mathcal{C}}$ satisfies the above property.

Propositoin 3.3

 $\hat{\mathcal{C}}(-,V)$ is the sheafification of $\mathcal{C}(-,V)$ for any $V\in X_{top}$.

Proof.

By stalk-wise discussion.

Remark 3.4

These prooves depend on the following two properties:

- ullet each functor $(-) \times A$ preserves any coproduct
- a morphism $f:\mathcal{F}\to\mathcal{G}$ between sheaves is an isomorphism if and only if all of the induced map $f_{x}:\mathcal{F}_{x}\to\mathcal{G}_{x}$ between stalks are isomorphisms

The first property holds in any Cartesian closed category.

The second property is known as *to have enough points* in *Topos Theory*. From this property, a lot of stalk-wise discussion can be justified. This property is not necessary for Theorem 3.2 to hold.

§4 enriched version

Let $\mathcal E$ be a complete and cocomplete category.

 $\longrightarrow \mathcal{E}$ is a Cartesian monoidal category.

Recall, roughly speaking, a \mathcal{E} -enriched category is a category with \mathcal{E} -valued Hom functor.

 ${\mathcal E}$ has an initial object \emptyset and a terminal object *.

So, we can regard X_{top} as \mathcal{E} -enriched category. Directly, we define it in the following:

$$X_{top}(U,V) \stackrel{\mathrm{def}}{=} egin{cases} * & (U \subset V) \\ \emptyset & (U \not\subset V) \end{cases}$$

Definition 4.1

Let X be a T_1 space. An \mathcal{E} -enriched pre-pseudogroup on X is an \mathcal{E} -enriched category \mathcal{C} with an \mathcal{E} -enriched functor $X_{top} \to \mathcal{C}$ satisfying the following:

- (1) $Ob(X_{top}) = Ob(C)$.
- (2) $C_x(V) \cong \coprod_{y \in V} C_x^y$ for $V \in X_{top}$ and $x \in X$, where the canonical projections $C_x^y \to C_x(V)$ are identified with the canonical injections $C_x^y \to \coprod_{y \in V} C_x^y$.
- (4) the \mathcal{E} -enriched category \mathcal{C}^{\star} is an \mathcal{E} -enriched groupoid.

A \mathcal{E} -enriched pseudogroup sheaf on X is a pre-pseudogroup on X satisfying the following:

(3) the presheaf C(-, V) is a sheaf for each $V \in X_{top}$.

Let $\mathcal E$ be a category satisfying the following:

- ullet is complete and cocomplete.
- ullet filtered colimits in ${\mathcal E}$ are exact.
- *IPC-property* holds in \mathcal{E} .
- \longrightarrow Any \mathcal{E} -valued presheaf has a sheafification. (cf. Kashiwara-Schapira, "Categories and Sheaves")

And suppose that the properties of Remark 3.4 hold in \mathcal{E} .

 \longrightarrow Any \mathcal{E} -enriched pre-pseudogroup has a sheafification.

Examples

Example 4.2

Set, the category of sets, satisfies the all above properties.

A **Set**-enriched pre-pseudogroup is just a pre-pseudogroup.

Example 4.3

Let G be a group.

G-**Set**, the category of sets with *G*-action, satisfies the all above properties.

So, any G-Set-enriched pre-pseudogroup has a sheafification.

Examples

Example 4.4

Let $\mathcal S$ be a small category.

Then, PSh(S), the category of presheaves on S, satisfies the all above properties.

In particular, **SSet**, the category of simplicial sets, satisfies the all above properties.

Example 4.5

Let $\mathcal S$ be a small site (i.e. a small category with a grothendieck topology). And suppose that all of the coverings are finite.

Then, Sh(S), the category of sheaves on S, satisfies the all above properties.